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This paper is devoted to the study of stability and bifurcations of homoclinic loops for planar
vector fields. For a given homoclinic loop, a sequence of loop numbers can be defined such that
the stability and bifurcations of the loop are determined by the first nonzero term of the sequence.
Formulas for the first several loop numbers were established in the past. In this paper, we will
introduce general formulas for the loop numbers for both the single and double homoclinic loops.
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1. Introduction and Hypotheses loop (or separatrix loop) consisting of a homoclinic
In this paper, we consider a planar C* vector field Qi
Z':f(z), z:(g’;7y) (1) F:{Z:T(t)lz(ioc):(0’0),t6R}
or with a saddle type equilibrium state O(0,0). Let
. o 5 the corresponding eigenvalues be A and —p with
t=Plzy), §=0Qy) (2) —p < 0 < A Our goal is to describe the behavior

where o € Z; is sufliciently large. Suppose that  of trajectories in a sufficiently small neighborhood
the vector field (1) has an isolated homoclinic  of T.

*This work is supported by NNSFC (No. 11371140) and Shanghai Key Laboratory of PMMP, and supported in part by Science
and Technology Commission of Shanghai Municipality (No. 18dz2271000).

1850101-1

1st Readine



= /T As(t)dt + b3(T)
=T

- /T As(t)dt + BT,
7
By = by(T')

T
= /T(A4 + 3A3by + 2A45b3 + Aqb3)dt

T
:/ (Ay + Azby)dt
g

i
+/ [2(143()2 + Agbg) + Agb%]dt.
-T

Furthermore, the second integral f;TT[Q(Ang +
Agbz) + Agb3)dt can be reduced to

T T
2/ (bobs)'dt — 3/ babldt = 2By By — B3,
-T -~T

which yields the expression of B;. N

Remark 4.1. When looking for a new loop number,
we always assume that all the previous loop num-
bers are zero. Hence for sequences of {B;} given in
Theorem 4, we only need to retain their integral
part. In fact, by a recursive process, we can deter-
mine the integral expression of B; one by one. For
example, we have

T
@ By = /TAz(t)dt,

T

® By =0, Bgz/ As(t)at,
T

T
@ Bg = B3 = 0, B4 = / (A4 + Agbg)dt
-T

@

If we assume that a sequence of saddle quan-
tities is zero, i.e. ¢; = d;, then under the transfor-
mation (z,y,t) — (y,x,—t), (4) is invariant under
the pre-2k+1-order truncation in the neighborhood
of O(0,0). In addition, the solution u(t) of the lin-
ear variational equation and the solution v(t) of the
adjoint equation are all symmetric at ¢ = &7, so
(u(t),v(t), z2(t)) can be extended symmetrically to

B e B TS - W
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the intervals [T, +o0c) and (—oo, —7']. We have the
following results

Theorem 5.

T
B, — / h(t)dt
J=T

+o0 _
~/ hy(t)dt, j:2,3,...,{0’23}

—o0

Proof.  Using the reversible invariance, we obtain

=T T+To
/ hj(t)dt + / h]' (t)dt =0
—T—-Ty

T

T T+
= Bj = / hj(t)dt = / hj(t)d
' -T =TT

= /+Oo hj(t)dt. [ ]

—0Q0

Remark 4.2. For fixed «, we can only obtain
((2p + 3) < a — 2)th order normal form in the
d-neighborhood of 0(0,0) (including the Taylor
remainder). That is, we can only find the pth order
saddle quantity. Therefore, the sequence {B;} only
needs to be computed up to By 1.

5. Poincaré Map and the Criterion
of Stability

By (9), and (16)—(18), we have the Poincaré map
P:PloPO:S(')"HSBL
q0(0,0) — q2 = (2, 9).

From (17), we have

no = 11, ’I’L(T) —= I9 (20)
and (9) leads to the expression of y; = y(zp).

The mapping P uniquely determines the rela-
tionship between zo and zg. Note that on S7,
zg > 0. Therefore I' is unstable if o — zg > 0,
and I' is stable if g —xp < 0. Then we only need to
consider the sign of the following successor function

&

H(%‘()) P(:Co) — Xy — T2 — Xg.

When Ry, I%y,...,Rr1 and By, ..., By are all zero,

by (9), (18), (20), straightforward calculations can
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lead to
H(zo) =n(T) — zg
= Y1+ Brayi T + o) — 2
_ (gkkﬂx(l)cﬂD n o(é%xngDQ)
+ Byt + o(zg ).
When Ry # 0, we have
H(zy) = 6kk71mg+1k’RkT + B;H_lxgﬂ -+ h.o.t.
= 5kkalg+1T + Bk+1x§+1 + h.o.t.
= (8" R7 + Bry1)zEt + hoot. (21)
When Ri =0, Byy1 # 0, we have
H(zo) = 6"k 1af ™ (§kRyqy2zo7)
+ Brrizg ™ 4+ ho.t.
e JkHRkangrzT + BkaSH + h.o.t.

= (5k+1Rk+1CL‘0T + BkH)xlO‘"H + h.o.t.
(22)

Since for a fixed § > 0, 7 =~ A7 !ln % is sulliciently
large if xq is sufficiently small, it follows from (21)
that the sign of aF Ry.7 + Bj.y1 i1s determined by Ry;
while in (22), the sign of H(zg) is determined by
the sign of By, because £o7 ~ d¢~*" 7 can be suffi-
ciently small. By (22), we know that when the loop
numbers Ry = By = Ry = By = Ry = ... =
By = R = 0, also Bgy1 = 0, the saddle quantity
Rj 1 is just the next quantity to study the stabil-
ity of homoclinic loop I'. We obtained the following
results.

The stability of a homoclinic loop
I’ is determined by the first nonzero wvalue in
the sequence of loop numbers: Ry, B1,R1,Bo, ...,
Ry, Bita, ..., Ri1, B, If the first nonzero value
is negative (or positive), then the loop is stable
(or unstable). Moreover, the length of the sequence
depends on o, and is only limited by | < [07“3]

Theorem 6.

We now consider the perturbed system X ,:

z = f(Z,,LL),

When the multiparameter p = 0, system X, has
an isolated homoclinic loop I". Then by [Roussarie,
1986], we have the following lemma.

z€R? pecRM AeN. (23)

Lemma 1. Let P(xg) be the Poincaré map of xg.
Then for sufficiently small u, X,, has an uniform
upper bound for the number of limit cycles near T,
which can be determined as follows. If P(zg) — xg
18 equivalent to /3kac§ with By, # 0, then X, has at
most 2k limit cycles for small 1 near the homoclinic
loop I'. If P(x¢) —z¢ is equivalent to ak+1m§+l Inzg
with agqy # 0, then X, has at most 2k + 1 limat
cycles.

Note that here Roussarie [1986] considered
a C% vector field. But [Leontovich, 1951] and
[Joyal & Rousseau, 1989] proved a similar result
for C"-smooth system (r is sufficiently large). Also
they gave the estimate for the existence of exact 2k
(or 2k + 1) limit cycles near I
By (21), we know that when Ry = B; = R; =
By = -+ = By =0, Ry #0, Plzg) —zp =
5’“RkT.T,g+l + h.ot. = O(ka’gJrl Inzg) if =g is suffi-
ciently small. By (22), when Ry = By = R| = By =
- = By_1 = 0, and furthermore R = 0, while
Bjy1 # 0, we have P(xg) —xg = Bk+1ml§+1 + h.o.t.
Then according to bifurcation theory [Chow & Hale,
1982; Han et al., 2018] and Lemma 1, we have the
following results.

Theorem 7. If the first (k — 1)th loop numbers
are zero, but the kth 4s not, then wunder small
perturbations, ot most k limit cycles can be gemer-
ated near the homoclinic orbit I'. Moreover, under
sustable perturbatlions, exactly k limit cycles can be
generated near I'.

6. The Stability of Double
Homoclinic Loops

The stability of a double homoclinic loop is related
to the stabilities of two single homoclinic loops
which share the same saddle point. Assume that
the vector field (1) has a double homoclinic loop
I' = I't UT's with a hyperbolic saddle point O.
We also assume the loop is isolated, that is, there
is no periodic orbit in a neighborhood of I". Since
we have already discussed the inner stability of sin-
gle homoclinic loops, in this section we only study
the outer stability of double homoclinic loops. Sim-
ilar to the single homoclinic loop, if there exists an
outer neighborhood U of I' such that w(A) = T’
(or «(A) = I') for any point A in U, then T is
said to be outer-stable (or outer-unstable). By using
normal form theory and Poincaré maps, we will
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give a sequence of constants to determine its outer
stability.

Following the discussion in Sec. 5, we can define
the stability of a double homoclinic loop I' by intro-
ducing the double homoclinic loop numbers. Below
is our main result of this section.

The stability of a double homoclinic
loop 1is determined by the first nonzero wvalue in
the sequence of loop numbers: R, B}, R}, B3, ...,
Ry, Biy1s--- By, B If the first nonzero value is
negative, then the loop is outer-stable. Otherwise, if

it 15 positive, then the loop is outer-unstable.

It follows from [Han & Zhu, 1994; Han et al.,
2003; Han & Wu, 2004] that

Ry = Ro = (Pr + Qy)l(0,0)»

Theorem 8.

2
Bi=)" 7{ (Pr +Qy)lrdt,  (if R§ = 0),
i=1 "7

R =—Ry, (if Rt =B’ =0).

In this section, we will establish formulas for the
entire sequence of the double homoclinic loop num-
bers, and demonstrate the relation between the sta-
bility criteria for the double homoclinic loops and
the single homoclinic loops. The proof follows from
the arguments developed in the previous sections
for single homoclinic loops.

Proof. Outline of the proof: To prove Theo-
rem 8, we still work on the normal form (4). Simi-
lar to the single homoclinic loop, we can construct
the moving coordinate [rames along [, i = 1,2.
We can define local Poincaré maps near the saddle
point O and the nonlocal Poincaré maps along the
homoclinic loop I'; in neighborhood of the dou-
ble homoclinic loop I'. Then we have the following
expressions of the corresponding Poincaré map
along T'y:

When Ry # 0, we have

Pii(z0) =z + 5’“ka’§+171 4+ h.o.t. (24)
When Ry =0, Bgy11 # 0, we have

Pry(zo) =20 + Bk+1,1x§+l + h.o.t. (25)

In the same way, we have the following expressions
of the corresponding Poincaré map along I'y:

When Ry # 0, we have
Pgl(xg) = x9 + 5kka}2€+lTQ + h.o.t. (26)

T T

Homoclinic Loops of Planar Vector Fields

When By =0, Biy1,2 # 0, we have

P (xg) = T+ B}H_LQLL‘IQH_I + h.o.t. (27)

Here Bj41, is the integral form given in Theo-
rem 6 along [';, 1 = 1,2. A straightforward calcula-
tion gives the successor functions along the double
homoclinic loops [

P(zp) = Poy 0 Pri(zo) — 2o

(5’“(71 -+ Tg)Rk:E}OHl + h.o.t.,

as Ry # 0,
B k+1 (28)
(Bk411 + Brg12)zg " +hoo.t.,

as Ry = 0.

Denote R} = (—1)*Ry, Bi,, = (—1)F(Bgy11 +
Biy12), £ =0,1,2,.... Note that o < 0 on 5.

Then the conclusions of Theorem 8 follow directly.
=

Remark 6.1. For k =1, R} = —Ry, and for k = 2,
R% = Ry. These cases are consistent with the results
in [Han et al., 2003; Han & Zhu, 2007].
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I3

Fig. 1. Homoclinic loop I' is within an annulus consisting of
an outer neighborhood V and an inner neighborhood U.

A small neighborhood of T' is an annulus,
divided by T" into two regions, U and V, see Fig. 1.
In the outer region V', there are two segments of the
local stable and unstable manifolds of O which are
part of the separatrices F2+ and I'; . All the other
trajectories in V must leave V as { — doc. Hence,
we will study the stability of I' from the inner region
U only. In this context, we say that the homoclinic
loop is asymptotically one-side stable if it is the w-
limit of all the trajectories starting from U. We say
that the homoclinic loop is unstable if it is the a-
limit of all the trajectories in U.

The study of the stability and bifurcations
of homoclinic loops can be traced back to
[Dulac, 1923|. Since then great progress has been
made. Shilnikov et al. [2001] defined a sequence
00,51, 01580, 0n, Snt1,-.. and proved that the
stability of a separatrix loop is determined by the
sign of the first nonzero entry in that sequence, if
not all entries in the sequence are zero. But they
did not give detailed expressions for the entries
of the sequence. Similar results were obtained in
[Joyal, 1988]. Concrete expressions for the first sev-
eral entries of the sequence were obtained by some
authors. For example, see the works of [Andronov
et al., 1971; Chow & Hale, 1982; Feng & Qian, 1985;
Han & Zhu, 2007; Leontovich, 1951; Melnikov, 1963;
Zhao & Wang, 2009]. For more references about the
stability of homoclinic loop, see [Clien & Du, 2015;
Dumortier & Li, 2001; Han et al., 2003; Han & W,
2004; Liu & Zhu, 2012; Krupa & Melbourne, 2004;
Ragazzo, 1997; Roussarie, 1986] and the references
cited therein. In this paper, we will show that for
a homoclinic loop of planar vector fields, the first
nonzero entry in the sequence may not always be
determined by the vector field near the saddle point,
but may also depend on the vector field near the
homoclinic loop. Hence the entries of the sequence
will be called the homoclinic loop numbers.

In addition to being a useful tool to study the
bifurcations of homoclinic orbits, the homoclinic
loop numbers can also be used to study Hilbert’s
16th problem (see [Li, 2003]). As pointed out in
[Joyal, 1988], the homoclinic loop numbers can be
used to determine the number of limit cycles that
can bifurcate from a homoclinic loop. See Theo-
rem 7 in Sec. 5 of this paper. Therefore it is impor-
tant to find concrete expressions of the homoclinic
loop numbers, both for theoretical studies, and for
practical applications.

The stability of a planar separatrix loop is eas-
ily solved when the divergence at the saddle point

00 = (Pz + Qy)|(0,o)

is nonzero. In this case, Dulac in 1923 studied ana-
lytic systemns and obtained the following result.

Theorem 1. If oy < 0, the homoclinic loop T" 1s
asymptotically one-side stable. If og > 0, the homo-
clinic loop ' is unstable.

The same results were probed by [Chow &
Hale, 1982; Shilnikov et al., 2001] when the sys-
tems are C"-smooth with r > 2. If the divergence
o9 = A — p =0, then the equilibrium point O(0, 0)
is called a weak saddle. In this case, it is impossible
to determine the stability of the homoclinic cycle
by the vector field near the saddle point alone. It
follows from [Feng & Qian, 1985; Leontovich, 1951]
that we have

Theorem 2. If o9 = 0 and s = jjoic(]jx +
Qy)lrdt < 0 (> 0), then the homoclinic loop is
stable (resp., unstable).

To discuss the case when ag = 51 = 0 and also
for the purpose of presenting our main results, we
need to reduce system (2) near the weak saddle to a
more refined normal form of the system. By [Han &
Zhu, 2007; Joyal, 1988], system (2) can then be writ-
ten as

§4
d=a |2+ Y aley)| +olle? + 473,
=1
’ ‘ )
=y | A+ dilay) | +olla® +v°))7,
=1

where £ = [T—El-], r < «— 1. Denote R; = ¢; — d;

(1 > 0), then R; is called the ith saddle quantity
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of (2) at O(0,0), by [Joyal & Rousseau, 1989], they
also provided formulas for saddle quantities.

When o = s7 = 0, it is shown in {Han & Zhu,
1994] that the third entry in the sequence is the
first order saddle quantity Ry which determines the
stability of I'(see also [Shilnikov et al., 2001]).

To summarize, for a given homoclinic loop of
a planar vector field, the first loop number is the
divergence of the vector field at the saddle point
[Chow & Hale, 1982; Dulac, 1923; Shilnikov et al.,
2001], the second loop number (assuming the first
one is zero) is the integral of the divergence around
the loop [Andronov et al., 1971; Feng & Qian, 1985].
If the first two loop numbers vanish, the third num-
ber is the first order saddle quantity Ry [Han & Zhu,
1994].

To generalize the previously obtained results, in
this paper we discuss the stability of a given homo-
clinic loop of a planar vector field by a sequence of
numbers

RU)BI:Rl)BQaRQ)B?nR?);" i
RkakJrl)- .- aRl—laBlaRla

where Bj; is the 2jth loop number, and the jth sad-
dle quantity R; is the 2j + 1th loop number (see
[Shilnikov et al., 2001)), 5 = 1,2,...,I, (in par-
ticular, Ry = o¢, B1 = s1). The expressions of
By, Bs, ..., By will be given below. The saddle quan-
tities I?; are related to the normal form near the
saddle, and the separatrix quantities B; are related
to the nonlocal map near the homoclinic loop. The
alternation of these quantities determines the sta-
bility of the homoclinic loop. Note that the formulas
of the saddle quantities have already been obtained
in [Joyal & Rousseau, 1989). In the present work, we
focus on computing the separatrix quantities and
demonstrating how to use the saddle quantities and
the separatrix quantities to discuss the stability of
homoclinic loops.

The computation of separatrix quantities B;
in planar systems is a difficult problem. In prin-
ciple, these formulas are integrals along the homo-
clinic loop which is similar to the Melnikov integral,
but they are more difficult to compute in practice.
Great progress has been made due to many new
ideas in dynamical systems. Using the traditional
curvilinear coordinate system, Han and Zhu [2007]
established the formula for the second separatrix
quantity when the first three homoclinic loop num-
bers are zeros. The third separatrix quantity was
obtained in [Luo & Li, 2005] by Tkachev’s method.

Homoclinic Loops of Planar Vector Fields

Recently the third and fourth separatrix quantities
were obtained in [Zhao & Wang, 2009] using the
traditional curvilinear coordinate system.

In this paper, we will obtain the expressions
of the other separatrix quantities by constructing a
moving coordinate frame in the neighborhood of the
homoclinic loop I', and furthermore obtain complete
results on detailed expressions of the whole homo-
clinic loop numbers. The moving coordinate frame
was originally introduced in the homoclinic and het-
eroclinic bifurcation problems in higher dimensional
spaces (see [Liu et al., 2012; Liu et al., 2013; Zhu &
Xia, 1998]), and was modified to discuss the sta-
bility of homoclinic loops. Compared with the tra-
ditional curvilinear coordinate system, the moving
coordinate frame is taken from the tangent vector
bundle along the homoclinic orbit and the solu-
tion vector bundle of the linearized system, and
we do not unitize or regularize the coordinate sys-
tem. Therefore, the new coordinate system can fully
reflect the geometric properties of the dynamical
system, such as the invariance, exponential com-
pressibility and expansibility of stable and unstable
manifolds, etc.

This paper is organized as the follows. In Sec. 2,
we obtain the local Poincaré map near the origin
by using the normal form for the weak saddle. In
Sec. 3, we establish the moving coordinate frame
along the homoclinic loop by the solutions of lin-
ear variational equations. In Sec. 4, we obtain the
nonlocal Poincaré map and derive the expressions
of the separatrix quantities. In Sec. 5, we prove
the main results and show that the homoclinic
loop numbers are divided into two classes: saddle
quantities and separatrix quantities. The alterna-
tion of these quantities determines the stability of
the homoclinic loop. The homoclinic loop numbers
for double homoclinic loops will be presented in the
last section.

2. Local Poincaré Map Near
the Origin

A basic method for studying the stability of homo-
clinic loop is to construct a Poincaré map by the
combination of two maps: a local map near the sad-
dle and a nonlocal map along the homoclinic loop
outside a neighborhood of the saddle. As for the
local map, the trajectories come arbitrarily closc to
the saddle. Therefore, the flight time is not bounded
from above. Then we need to give an appropriate
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0] X

Fig. 2. The Poincaré map ncar the honoclinic loop T'.
estimate for the local map. To do this we will reduce
the system in a neighborhood of O to a special form.

Consider (1) and (2). Under the assumptions of
the previous section, the local unstable manifolds
and the local stable manifolds of O(0,0) restricted
to I' are tangent to the z and y axes, respectively,
and can be expressed as:

loe = 12 = (z,y) |y = y"(2),0 < 2 < 24},

e = {2 = (z,9) [z = 2°(y),0 < y < 24},

where y*,z° are C®~l-smooth functions. Assume
that (1) has a homoclinic loop with —p+ A =0, i.e.
the saddle is weak. It is known that system (1) can

be transformed into the following normal form (see
[Han & Zhu, 2007; Joyal, 1988])

¥
(/\ +) eilay) + (zy) wi(z, y)] ;

i=1

(4)

r ?
yzy—a—§j¢umﬂ+uw%wawr

where |(z,y)] < 268, |w;| = o(1), w; € CO~%73 4 =
1,2,0< 8 < 1.

Along the homoclinic loop z = r(t), for a small
d > 0, define two cross-sections Sy, S7 as follows.

So={z=(z,9) |y =40 <|z| <& < §°},
S ={z=(2,9) |z =060< |yl <e<?}.

Assume that the flight time from S; to Sy is 27T
where r(—-T) € Sy and 7(T) € Sp. It is easy to
see that 7" can be arbitrarily large if § > 0 is suf-
ficiently small. For such small & and large T', from
the definitions of Sp, 51, we have r(~T) = (4,0)
(1) = (0, 9).

5

R L R s e s =

We will study the flow in the inner region U
only. Let the restrictions of Sy, S1 to U be

SO+:{Z€5'0|.’L’ZO},
ST:{zESHyEO}.

The solution of system (4) induces the local
Poincaré map

Py:qe Sy —aqesSy,

qo = (®0,0), q1 = (d,71).

Let 7 = 7(xp) be the time spent from ¢y to q1, It
is obvious that 7(z¢) is a strictly monotone func-
tion and zg — 0 if and only if 7 — 4o0. If we
define 41 = 0 when zp = 0. Then the function
y1 = y(zo) induced by the map Py is continuous
at zg = 0 (see [Shilnikov et al., 2001]). Suppose the
order of the weak saddle O(0,0) is not less than #,
a > 2045, then for any k < £, set Ry = ¢, — dj,.
Suppose Ry is the first nonzero loop number, that
is,

ROZB]:RlzBQZRQZ"':Bk:O7 R;ﬁéO.

In this case, the saddle quantity is the first nonzero
term in the sequence of loop numbers. Multiply the
first equation of (4) by y and the second equation
by z, then add them together, we have

% = [Ri +o(1)]dt, if Ry #0,
% = [Rg41 + o(1)]zydt, (5)

if Ry =0, Rpy1 0.

When Rji # 0, from the first equation, we can
determine the stability of homoclinic loop T" by the
sign of the saddle quantity Rj. But when Ry = 0,
Ry 1 # 0, combining with the second equation, we
will show that there may exist a separatrix quan-
tity Bry1 between the saddle quantities Ry, Ry,q.
If Bri1 # 0, the sign of By,1 can determine the
stability of homoclinic loop T'. Also we know that
when the separatrix quantity By, = 0, the saddle
quantity Ry 1 is just the next number to determine
the stability of homoclinic loop 1", if Ry 1 # 0. See
Sec. 5 for details.

Integrate the equations along the trajectory
from qg to ¢, and apply the integral mean value the-
oremn to the right-hand side of the above equation,

1850101-4
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we have

[zoyo] * — [m1y1] 7"
= Dy 2 k[Ry, + o(1)]7, if Ry #0,
[Zoyo] * — [z131] " (6)

* A * *
= D}, = k[Rpq1 + o(1)]z(t™)y(t™)T,
if Rp =0, Ry #0,

where 59 = 1 = d, t* € (0,7’), Ry =By =R =
-+ = By = 0. Dividing both sides of the second
equation of (5) by xzy and solving it directly from
t =0 tot=1t" and taking a Taylor expansion, we

have
1

z(t*)y(t*) = zoyo[l — (k + 1) Rey1 (zoyo) " He*] 7

= Zo¥Yo + 0((m0y0)k+2t*).

Substituting the expression of x(t*)y(t*) into Dj,
we obtain

DZ = k[Rk_H + 0(1)]:803/0[1 + O(IOyo)k+lt*]T
= kO[Ry41 + o(1)]zo[1 + o(zo)t*]T

= kd[Rp1 + o(1) + o(zo)t*]zoT. (7)

Taking D = Dy if Ry # 0, and D = Dj if Ry =
0, Rp41 # 0, then by (6), we obtain the unified
expression
1
y1 = wo[l — 2§ D] E. (8)
Since zg ~ e, and zg — 0 if and only if
7 — +o00, then zo7t* = de 71" — 0, as zg — 0,
furthermore, we have xlgékD — 0 as g — 0. With
the Taylor expansion, (8) can then be written as

y1 = zo+ 6"k e I D + o(6% 23 D), (9)
where
Dy = kR +o(1)]r, if Rg #0,
Dj = 0k[Rgi1 + o(1) + o(zo)t*|zor,
if Rp=0, Ry #0.

EY =

Then the local Poincaré map Py : SO+ — Sf is
uniquely determined by (9).

Remark 2.1. In (9), we give the expression in dif-
ferent precisions according to whether R, = 0 or
not. The difference in accuracy is mainly due to our
selection of diflerent degrees ol truncation of the
normal form (4). This technique and the resulting
expression of Fy can make the complex process of
studying the stability of I' much simpler.

Bl I e

Homoclinic Loops of Planar Vector Fields

3. Solutions of the Linear
Variational Equation

Next we establish the moving frame along the
homoclinic loop I' outside a neighborhood of the
origin. We will consider the linear variational equa-
tion of (1) along I', and obtain some solutions with
particular property in the moving coordinate frame.
Consider the following linear variational equation

z2=A(t)z, A=Df(rt), tc[-T,7] (10)
and its adjoint system
z=—-A"(t)z, te[-T,T], (11)

where * denotes the transpose of a matrix. By the

discussion in Sec. 2, we know that r(—=1") = (4,0)*,

r(1) = (0,9)*. Combining with (4), we have
(—=T) = (X0.0)", 7(T)=(0,—XH)".

Then we can choose a fundamental solution matrix
Z(t) = (u(t), z2(t)) of (10), such that

z(t) = _7;;?’ Z(T) = Iy,

w —1
Z(_T) = <v‘}11 0)
w12

where Iy is second order unit matrix. Denote B =
+
fioooo(PﬂE + Qy)|=r()dt, we have

Theorem 3. wqg > 0, (1 — w12)31 >0, wip =1 iﬁ

By =0, and lims_.g ﬁ = 0.

Proof.  Let u(t) be the solution of (10) with the ini-
tial value (1,0) at t = 7. Then by the existence and
uniqueness theorem, there exists unique (wy1, wig)*,
such that u(—7T) = (w11,w12)*. By virtue of Liou-
ville formula about Wronski determinant, we have

w19 = det Z(—T)

T
:exp{—/Tdiva(z) )dt}detZ(T)
. z=r(t

T
= exp —/ div Df (z) dt
=T z=r(l)
o0
= exp —/ (P +Qy) dt
z=7(1)

—o0

= exp{—B1},
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then we obtain wijs > 0, (1 — wy2)B; > 0, and
w19 — 1iff Bl = 0.

Before proving the limit, we first consider the
extension of the solutions u(t) and z3(t) to the inter-
vals [T,T + Ty] and [T — T3, —T)] respectively.
Note that the unstable and stable manifolds have
been straightened to z and ¥y axes, respectively.
Observe that the trajectories of (4) have symmetry
when restricted to the 24-neighborhood of x and y
axes near the origin. Thus there exists 77 and 6y,

such that
T‘(T+T1) = (0, 51)*, ?"(—T—Tl) = ((51,0)*

and 4; — 0 if and only if T3 — +oco. Let r(t) =
(rz(t), ry ()", w(t) = (z(t),y(t))*, then we have

e § T t . ,ry *7
i) - (t) = (0,7 (8))
ry(t) = e MT e [T, T+ 7],
A oepr?
Alt) = e r(t) = (rz(1),0)",
0 —A

re(t) = 8MFD |t e =T — 1y, -T),

where §; = de~*"1. Written in component form,
(10) can be expressed as

T = Az,
y = dy82e 22T g — )y,
w(T) =(1,0)", te [I,T+ T1]

and

& = Ax + 1622 HT)y
y=—Ay,
u(—T) = (u)u,wlg)*, t € [—T — 17, —T]
Extending u(t) to each of the two intervals, we have

z(t) =T e [T, T+ 1),

g
y(t) — / d1 (5267/\(5——T)e—/\(tfs)ds
T

-t
—d152/ M=t s
T

=d 62T —T), te[l,T+T)

w(T + 1)) = (1,8) e,
B =d6Te T = 4166, Tye

and

AET),

y(t) = wige” te[-T-T,-T],

¢
z(t) = wp M) 4 / c16%wy0e* T g
-7

= T 4 020, T (¢ 4 T,
te|-T-1,-T),
uw(—=T - Ty) = (w11 — c10%wioT1, wig) e .
Let
7(t
a(t) = e MMau(t) + 9,\(—03
2(t) = = () (0),
Z(t) = (u(t),z2(t)), te[-T-T,T+T

By 6; = de "1, we have r(t) = (0,5e*/\(t—T))* ik
t e [T, T+, and r(t) = (6 D) 0)*if ¢t € [T~
Ty, —T]. Therefore

— 1 0
Z(r+1) = (0 1),

= u_Jll —1
Z(-T—-T) = <_ >,
w192 0

where @y = (w11 — 0152w12T1)e*2’\Tl + 3,
w12 = wig. It follows directly that

gl

. W1 ) 11
lim — = lim — =0. m

51—0 Wio T—+oo W19

Remark 3.1. The parameter wiy can be used as the
second criterion for the stability of I, that is, the
divergence integral By can be replaced by 1 — wqs.

Notice that there exists a fundamental solution
matrix for the adjoint equation (11):

O1(t) = (Z71(1)* 2 (u(t), da(1)),

where v(t) = (v1(t), v2(t))*. Due to ®5(¢)Z1(t) = 1,
we know that

o(=T) = (O:w]}l)*? o(T) = (1,0)".
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4. Nonlocal Poincaré Map

We now consider the mnonlocal Poincaré map
induced by the flow of system (1) in a neighborhood
of T'. The technique is similar to the curvilinear
coordinate system established near the periodic
orbit (see [Chow & Hale, 1982, p. 350]). From the
analysis in Sec. 3, we use the moving coordinate
frame {u(t), zo(¢)} along the homoclinic loop I' out-
side a neighborhood of the origin. Similar to the
change of variables near the periodic orbit, we use
the following coordinate transformation near I':

=7r(t) + u(t)n(t),

where u(t) = (ui(t),u2(t))*. Substituting (12)
into (4), and by the notations in (1) [or (2)], we
have

() +u(t)n(t) + wt)n(t) = f(r(t) + u(t)n(t)).

Using 7 = f(r(t)), u(t) = Au(t), the above equation
is changed into the following form

f(r)

Taking Taylor expansion to the right side of the
equation, and multiplying both sides with v(t) =
(v1,v2)*, by v(t)u(t) = 1, we have

n=Ag(t)n® + As(t)n® + - + A, (t)nP

+ -+ Al(t)nl + AH—l(”v 97 n)nl+17 (13)

Z(t) te[-T,T], (12)

un = f(r+un) — — Aun.

where
p=23,...,l, I<a-3, te|[-T,T],
1 5, a\?
Ay (t) = — — — | P
pl0) p!{”1<“18x‘*“28y>
7, a\?
tvg|lui - tus— | @ :
Oz By z=r(t)
1 d 8\
Al+1(t) (l—i—l) (%1% <U18—+U28I > P

z=r(t)+A(t)
(14)

p) P! +1
+’02<U1a+u28y> Q

A(t) = 0(t)u(t)n(t), 0(t) € (0,1), Ay is a con-
tinuous bounded function of ¢, §, and n, while A,
is continuously differentiable with respect to ¢ for
p <L

Homoclinic Loops of Planar Vector Fields

Notice that when we look for the next loop
number, we need to assume the previous loop num-
bers are zero. Since the first four loop numbers for
the stability problem are given, for simplicity, we
assume B = 0 next. By Theorem 3, that is

w1 — 1. (15)

Solving Eq. (13), we obtain the solution n(t) =
n(t, =T, ng) with the initial value ng at t = —T,
then n(t) = n(t,~T,np) defines the nonlocal
Poincaré map (see Fig. 2)

P S;r — SS_, q1 — ¢o. (16)
According to the definition of Sy and S7, Theorem 3,
and the coordinate transformation (12), we have

q =0, y1) =r(-T) 4+ nou(-T)

(17)
(1) + n(T)u(T)

0,8)" + n(T)(1,0)*

It is easy to see that the nonlocal map P; is uniquely
determined by the solution n(t) that satisfies the
boundary values n(—T) = ng and n(T") = z.

Note that the solution n(t) is at least I+1 times
continuously differentiable with respect to initial
values ng on [0, ). Hence it can be expanded into a
Taylor polynomial with Lagrange remainder

+ bp(t)nd

+ o b(Onh 4+ b (8,6, no)nbtt. (18)

n(t) = bing + bo(t)n? + bs(t)nd + - --

Here

E=¢&(t)€(0,1), =1, b(-T)=0,
bp(T) = Bp, p=2,3,...,1, b1(=T,& ng) =0
and by41(%,&,ng) = ”H%f*]—bv E(t)no- Also by(t)

is a C! function in t, and biy1 is a C! function in
(t,&,np). Substituting n(¢) into (13), we have
'Qn%—k---—}-b;)ng—k---+bf(t)nlo

5]
—b 1. ng)nkt!
+F)1 141 (1, & no)ng
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= Ay(bing + bo(t)ng + - + bl+1”é+l)2
+A3(n()’ + -+ Ap(n(t))?
+ ot A (n()
Therefore,
by = hy(t) £ Aq(t),
by = ha(t) 2 Ag + AyClbs,
by = ha(t) & Ag + A3CLby + Ag(Clbs + C263),
b = hs(t) = As + AsClby + As(Chbs + C2b3)
+ Ap(C3C1babs + Cby),
L= hg(t) 2 Ag + AsClby + Ag(Clbs + C23)
+ A3(C3Chbobs + C3by + b3)
+ A2(C3CTbabs + Chbs + b2),
f = ha(t) 2 Ar + AeCiby + As(Clbs + C2b3)
+ Aq(C3C3babs + Cba)
+ A3(C3C%boby + CLbs + CLb2 + Cib2b3)
+ Ap(Cibg + CICYbabs + CICIbsby),
By = hg(t) 2 Ag + A7CLby + Ag(Clbs + C202)
+ A5(CLbs + CLClbobs)
+ A4(Clbs + C1C3babs + C3b2 + CLCLb2bs)
+ A3(C3bg + C3C3bybs + C1CLbsby
+ C3b3by + CEb2) + Az(Clby + Clbybs
+ Cibsbs + b2).

In general, forVp = 2,3, ..., we have the following

expression
A
by, = hp(t) = Ap + Ap_1C)_ by

+ Ap-2(Cp_ybs + C2_,b3)

o 4 A Z by biy -+ by,
i1b e Fig=p
+As > bbby + Ay D byby,
11+i2+iz=p i1+ia=p

(19)

L B T

where ¢ = 4,5,...,p— 3, the symbol Ziﬁmﬂqu X
biy by, - - - by, represents the sum of all the permuta-
tions of the function column b; b;, - - - b, that satis-
fies the condition 4y +--- + i = p.

For example, when p = 5, the coeflicient of Aj

> bibiby

11 +ip+i3=p

= b1b1bg + b1b3by + bsb1by + bibaby

is

+ bele + bgblbg
= 3b3 + 3b3 = Clibs + C2b3.

When p = 6, the coeflicient of Ay is

> by bbby,

i1+ip+is+ia=p
= bybibybs + bibibsby + bibabiby + bsbibiby
+ b1b1boby 4 b1bobyby + bibababy + bybibyby
+ bab1baby + bybobiby
= 4by 4 6b3 = Clbs + C3b3.

Using the expression (19), the coeflicients
ba(t), b3(t),...,b(t) in the Taylor expansion (18)
can be determined one by one, with the initial val-
ues by(—1") = 0. In order to determine the stability

of I, we need to solve B, = bp(T), p = 2,...,1.
Hence, By (18), (19) we obtain

Theorem 4.

T
&z/‘&W%

-T

T
Bgzl/ As(t)dt + B3,
-T

T
By = / <A4 + Agbg)dt + 289B35 — Bg,
T

Proof. By and By can be obtained directly from
the definition. By Ay = b}, bo(—T") = 0, we have

By = b3(T)

T T
= / A3(t)dt + 2 / Aobodt
-T J=T
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